
© 2010 Carnegie Mellon University

Secure Coding
Software Assurance Forum

Robert C. Seacord

2© 2010 Carnegie Mellon University

Secure Coding Initiative
Initiative Goals
Work with software developers and
software development organizations
to eliminate vulnerabilities resulting
from coding errors before they are
deployed.

Current Capabilities
Secure coding standards
www.securecoding.cert.org
Source code analysis and
conformance testing
Training courses
Involved in international standards
development.

Overall Thrusts
Advance the state of the practice in
secure coding

Identify common programming
errors that lead to software
vulnerabilities

Establish standard secure coding
practices

Educate software developers

3© 2010 Carnegie Mellon University

CERT Secure Coding Initiative

Reduce the number of vulnerabilities to a level where
they can be handled by computer security incident
response teams (CSIRTs)

Decrease remediation costs by eliminating
vulnerabilities before software is deployed

4© 2010 Carnegie Mellon University

University courses

• CMU

• Purdue

• University of Florida

• Santa Clara University

• St. John Fisher College

SEI Secure
Coding Course

Licensed to:

• Computer Associates

• Siemens

Adoption by Analyzer Tools

Analyzer
conformance test

SCALe
Conformity
Assessment

Secure Design

Patterns Influence International
Standard Bodies

B
re

ad
th

 o
f i

m
pa

ct

2003 Time 2010

Adoption by software developers

• Lockheed Martin Aeronautics

• General Atomics

•Cisco

WG14 CSCG SG

Secure Coding Roadmap

5© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

6© 2010 Carnegie Mellon University

CERT Secure Coding Standards

CERT C Secure Coding Standard
• Extend to C1X

• Analyzable C Secure Coding
Guidelines Technical Report

CERT C++ Secure Coding Standard
• Completion of CERT C++ Secure

Coding Standard

• Static analysis checkers

CERT Oracle Secure Coding
Standard for Java

• Completion of Java Secure
Coding Standard

• Static analysis checkers

7© 2010 Carnegie Mellon University

The CERT C Secure Coding Standard

Developed with community
involvement, including over
320 registered participants
on the wiki.

Version 1.0 published by
Addison-Wesley in
September, 2008.

• 134 Recommendations

• 89 Rules

8© 2010 Carnegie Mellon University

Noncompliant Examples & Compliant Solutions

Noncompliant Code Example
In this noncompliant code example, the char pointer p is
initialized to the address of a string literal. Attempting to modify
the string literal results in undefined behavior.

char *p = "string literal"; p[0] = 'S';

Compliant Solution

As an array initializer, a string literal specifies the initial values
of characters in an array as well as the size of the array. This
code creates a copy of the string literal in the space allocated
to the character array a. The string stored in a can be safely
modified.

char a[] = "string literal"; a[0] = 'S';

9© 2010 Carnegie Mellon University

Distribution of C Recommendations

10© 2010 Carnegie Mellon University

Distribution of C Rules

11© 2010 Carnegie Mellon University

Failure Mode, Effects, and Criticality
Analysis

Severity – how serious are the consequences of
the rule being ignored?

Value Meaning Examples of Vulnerability

1 low denial-of-service attack, abnormal
termination

2 medium data integrity violation,
unintentional information
disclosure

3 high run arbitrary code

Likelihood – how likely is it that a flaw introduced
by ignoring the rule can lead to an exploitable
vulnerability?

Value Meaning

1 unlikely

2 probable

3 likely

Cost – the cost of mitigating the vulnerability.

Value Meaning Detection Correction

1 high manual manual

2 medium automatic manual

3 low automatic automatic

12© 2010 Carnegie Mellon University

FIO30-C. Exclude user input from format strings

13© 2010 Carnegie Mellon University

CERT Mitigation Information

US CERT Technical Alerts

CERT Secure Coding Standard

Examples of vulnerabilities
resulting from the violation
of this recommendation can
be found on the CERT
website .

Vulnerability Note VU#649732

This vulnerability occurred as a
result of failing to comply with rule
FIO30-C of the CERT C
Programming Language Secure
Coding Standard.

14© 2010 Carnegie Mellon University

Secure Coding Standard Applications

Establish secure coding practices within an
organization

• may be extended with organization-specific rules

• cannot replace or remove existing rules

Train software professionals

Certify programmers in secure
coding

Establish requirements for
software analysis tools

Software Certification

15© 2010 Carnegie Mellon University

Organizational Adoption

Software developers organizations that have begun to
require code to conform to the CERT C Secure Coding
Standard:

Software tools that (partially) enforce the CERT C Secure
Coding Standard:

16© 2010 Carnegie Mellon University

True Positives vs. Flagged Nonconformities

Do not apply the sizeof operator to an expression of pointer type
(ARR01-C) Applying the sizeof operator to an expression of pointer type
can result in under allocation, partial initialization, partial copying, or other
logical incompleteness or inconsistency if, as is usually the case, the
programmer means to determine the size of an actual object. If the
mistake occurs in an allocation, subsequent operations on the under-
allocated object may lead to buffer overflows.

Ratio of true positives (bugs) to flagged nonconformities:

17© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

18© 2010 Carnegie Mellon University

Source Code Analysis Laboratory

The CERT Source Code Analysis Laboratory
(SCALe) is an operational capability for application
conformance testing against one of CERT’s secure
coding standards.

• A detailed report of findings is provided to the customer
to repair.

• After the developer has addressed these findings, the
product version is certified as conforming to the standard

• The certification is published in a registry of certified
systems.

19© 2010 Carnegie Mellon University

Conformance Testing

The use of secure coding standards defines a
proscriptive set of rules and recommendations to
which the source code can be evaluated for
compliance.

20© 2010 Carnegie Mellon University

Government Demand

CERT secure coding initiative has performed source code
assessments for various government agencies.

The Application Security and Development Security Technical
Implementation Guide (STIG)

• is being specified in DoD acquisition programs' Request for
Proposals (RFPs).

• provides security guidance for use throughout an application's
development lifecycle.

Section 2.1.5, “Coding Standards” of the Application Security
and Development STIG identifies the following requirement:

(APP2060.1: CAT II) The Program Manager will ensure the
development team follows a set of coding standards."

21© 2010 Carnegie Mellon University

Industry Demand

Conformance with CERT Secure Coding Standards can
represent a significant investment by a software developer,
particularly when it is necessary to refactor or otherwise
modernize existing software systems.

However, it is not always possible for a software developer to
benefit from this investment, because it is not always easy to
market code quality.

A goal of conformance testing is to provide an incentive for
industry to invest in developing conforming systems.

• perform conformance testing against CERT secure coding standards

• verify that a software system conforms with a CERT secure coding
standard

• maintain a certificate registry with the certificates of conforming
systems

22© 2010 Carnegie Mellon University

Conformance Certificates

Certificates contain the name and version of the software
system which passed the conformance test, and the results of
the test.

Similar process followed by The Open Group (see
http://www.opengroup.org/collaboration-services/certification.html)

Initially, all assessments are performed by CERT

In the future, third-parties may be accredited to perform
certifications.

23© 2010 Carnegie Mellon University

Source Code Analysis Laboratory

24© 2010 Carnegie Mellon University

SCALeSCALe

Merged
flagged

non-
conformities

Probable
violations

Confirmed

violations

Analysis Tool

Analysis Tool

Analysis Tool

Client Code

Flagged
non-

conformities

Build
Environment

Conformance Testing Process

25© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

26© 2010 Carnegie Mellon University

As-If Infinitely Ranged Integers

The purpose of the AIR integer model is to either
• produce a value which is equivalent to a value that would

have been obtained using infinitely ranged integers

• result in a runtime constraint violation.

This model is generally applied to both signed and
unsigned integers but may be enabled or disabled
per compilation unit.

27© 2010 Carnegie Mellon University

AIR Integer Model

In the AIR integer model, when an observation point
is reached, and before any critical undefined
behavior occurs, if traps have not been disabled, and
if no traps have been raised, then any integer value
in the output is correctly represented (“as if infinitely
ranged”).

An observation point occurs at an output, including a
volatile object access.

Traps are implemented using either
• existing hardware traps (such as divide-by-zero)

• by invoking a runtime-constraint handler

28© 2010 Carnegie Mellon University

Observation Points

AIR Integers do not require that an exception is
raised every time there is an integer overflow or
truncation error.

It is acceptable to delay catching an incorrectly
represented value until an observation point is
reached just before it either

• affects the output

• causes a critical undefined behavior (as defined by the
C1X Analyzability Annex).

This model improves the ability of compilers to
optimize, without sacrificing safety and security.

29© 2010 Carnegie Mellon University

Availability

Requirements
• A patched version of GCC 4.5.0 to insert the overflow

and truncation checks
• A patched stdlib.h file to include the runtime-

constraint handler definitions from ISO/IEC TR 24731-1
• The libconstraint library, which defines the

constraint handlers used by AIR Integers

Can all be downloaded form:
http://www.cert.org/secure-coding/integralsecurity.html

30© 2010 Carnegie Mellon University

Testing vs. Runtime Protection

AIR integers can be used in both dynamic analysis and as a
runtime protection scheme.

There is a well understood tradeoff between runtime overhead
and development costs.

• Providing correctness “guarantees” requires extensive testing and
excruciating attention to detail

• Development costs can be decreased by adding runtime protection
mechanisms however this will

— increase the size of the executable

— Introduce runtime overhead

• Runtime protection mechanisms still require a viable recovery
strategy

• It is reasonable to provide some level of assurance combined with
runtime checks, but you don’t want to pay twice

31© 2010 Carnegie Mellon University

As-if Infinitely Ranged (AIR) Integers
AIR integers is a model for automating the elimination of integer overflow
and truncation in C and C++ code.

• integer operations either succeed or trap
• uses the runtime-constraint handling mechanisms defined by ISO/IEC TR

24731-1 and C1X Annex L “Analyzability”

• generates constraint violations for overflow, wrapping, and truncation

AIR integer model has been fully implemented in a proof-of-concept
modification to the GCC compiler Version 4.5.0 for IA-32 processors

SPECINT2006 macro-benchmarks

32© 2010 Carnegie Mellon University

AIR Integer Efficacy Study

Jasper and FFmpeg libraries instrumented using the modified
GCC compiler and fuzz tested.

Violations of the following CERT C Secure Coding Standard
rules were discovered:

• INT30-C. Ensure that unsigned integer operations do not wrap

• INT31-C. Ensure that integer conversions do not result in lost or
misinterpreted data

• INT32-C. Ensure that operations on signed integers do not result in
overflow

• INT34-C. Do not shift a negative number of bits or more bits than
exist in the operand

• INT35-C. Evaluate integer expressions in a larger size before
comparing or assigning to that size

33© 2010 Carnegie Mellon University

AIR Integer Efficacy Study

Defects discovered in JasPer
image processing library

Defects discovered in FFmpeg
audio/video processing library

34© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

35© 2010 Carnegie Mellon University

Secure C Compiler

Develop a holistic solution to

the problem that includes
• C1X analyzability annex

• As-if infinitely ranged (“AIR”) integers

• Plum Hall Safe Secure C/C++ methods (SSCC)

• C and C++ Secure Coding Guidelines

This solution eliminates the vulnerabilities:
• Writing outside the bounds of an object (e.g., buffer overflow)

• Reading outside the bounds of an object

• Arbitrary reads/writes (e.g., wild-pointer stores)

• Integer overflow and truncation

Proof-of-concept implementation of the AIR integer model
built upon Clang/LLVM has been completed

Compil
er

Source fileSource file

Internal
represent
ation

(IR)

diagnosticsdiagnostics

Object codeObject code

Pre-linkerPre-linker LinkerLinker Safe/Secure
Executable
Safe/Secure
Executable

Run-time
pointer-checking

library

Run-time
pointer-checking

library

Compiler
Frontend
Compiler
Frontend

Modified
Compiler
Backend

Modified
Compiler
Backend

Advice fileAdvice file

ROSEROSE

36© 2010 Carnegie Mellon University

Completed So Far

Chose Clang/LLVM for integer overflow portion.

Implemented checking for AIR Integer model.
• There were already checks for some signed operations (via -ftrapv),

but they were incomplete and buggy. These were fixed and
extended to cover the AIR Integer model.

• Checks were added for unsigned operations.

Strategy: Insert checks for all operations that might need
them, then optimize away as many as possible.
• Avoids spreading optimizations out all over the compiler;

concentrates them in the optimizer.

• All the work is done in the LLVM intermediate representation, not the
machine-specific assembly code.

• Therefore, the AIR Integer checking should work for all of LLVM's
target architectures (though this has only been tested for x86-64).

37© 2010 Carnegie Mellon University

Future Plans

Choose a platform for buffer overflow prevention.

Over the next year: Add buffer overflow prevention
capabilities to a compiler, for a single-threaded
environment.

The following year: Extend to a multithreaded
environment.

38© 2010 Carnegie Mellon University

Platform Contenders

Clang/LLVM, possibly including the SAFECode
project at the University of Illinois.
http://sva.cs.illinois.edu

EDG/ROSE, which offers a higher-level look at the
program.

Cetus was considered but will probably not be used
because the others are more mainstream and have
clearer licenses.

39© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

40© 2010 Carnegie Mellon University

ISO/IEC International Standards

C++ standards committees (WG21 & PL22.16)
• Hosted Pittsburgh meeting which resulted in Final Committee

Draft of C++

C Standards Committees (WG14 & PL22.11)
• CERT Chairs INCITS PL22.11 Chair

• Hosting May 2011 meeting in Boulder, Colorado

• Developed multiple proposals for improved security which have
been adopted by WG14 for C1X

C Secure Coding Rules Study Group (CSCR SG)

ISO/IEC JTC 1/SC 22/WG 23 Programming Language
Vulnerabilities

PL22 (programming languages)

41© 2010 Carnegie Mellon University

CSCR SG History

The idea of C secure coding guidelines arose during
the discussion of the managed strings proposal at the
Berlin meeting of the ISO/IEC JTC 1/SC 22/WG 14
for standardization of the C language in March, 2006.

The closest existing product at the time, MISRA C,
was generally viewed by the committee as
inadequate because, among other reasons, it
precluded all the language features which had been
introduced by ISO/IEC 9899:1999.

42© 2010 Carnegie Mellon University

CERT C Secure Coding Guidelines

In collaboration with the software assurance and C
language development communities, CERT
developed The CERT C Secure Coding Standard to
provide secure coding guidance to developers.

43© 2010 Carnegie Mellon University

Recent History

The CERT C Secure Coding guidelines were first
reviewed by WG14 at the London (April 2007)
meeting and again at the Kona meeting (August
2007)

In 2009, CERT developed a set of automatically-
enforceable C Secure Coding Guidelines and
contributed this document to ISO/IEC for use in the
standardization process.

44© 2010 Carnegie Mellon University

C Secure Coding Guidelines SG

Purpose: Study the problem of producing analyzable secure
coding guidelines for C99 and C1x

First meeting held on October 27, 2009

Meetings will be held the first and third Wednesday of each
month by teleconference

• David Keaton/CERT is the chair

• Martin Sebor/CISCO is the vice-chair

• Robert Seacord is the project editor

CSCR SG Wiki:
https://www.securecoding.cert.org/confluence/display/CSCG/C
+Secure+Coding+Guidelines

Mailing list : wg14-cscg-l@cert.org

45© 2010 Carnegie Mellon University

CSCG SG

The study group is studying:
1. where the work belongs,

2. what to use as a base document (if any), and

3. what is the appropriate deliverable

46© 2010 Carnegie Mellon University

Test Suites

CERT agrees to sponsor and coordinate a test suite
under BSD-type license (freely available for any use)

May make use of, or be integrated with, the NIST
SAMATE Reference Dataset

47© 2010 Carnegie Mellon University

Dangerous Optimizations and the Loss of
Causality
Increasingly, compiler writers are taking advantage of
undefined behaviors in the C and C++ programming
languages to improve optimizations.

Frequently, these optimizations are interfering with
the ability of developers to perform cause-effect
analysis on their source code, that is, analyzing the
dependence of downstream results on prior results.

Consequently, these optimizations are eliminating
causality in software and are increasing the
probability of software faults, defects, and
vulnerabilities.

48© 2010 Carnegie Mellon University

Undefined Behaviors

Undefined behaviors are identified in the standard:
• If a “shall” or “shall not” requirement is violated, and that requirement

appears outside of a constraint, the behavior is undefined.

• Undefined behavior is otherwise indicated in this International
Standard by the words “undefined behavior”

• by the omission of any explicit definition of behavior.

There is no difference in emphasis among these three; they all
describe “behavior that is undefined”.

C99 Annex J.2, “Undefined behavior,” contains a list of explicit
undefined behaviors in C99.

49© 2010 Carnegie Mellon University

Undefined Behaviors

Behaviors are classified as “undefined” by the standards
committees to:

• give the implementer license not to catch certain program errors that
are difficult to diagnose;

• avoid defining obscure corner cases which would favor one
implementation strategy over another;

• identify areas of possible conforming language extension: the
implementer may augment the language by providing a definition of
the officially undefined behavior.

Implementations may
• ignore undefined behavior completely with unpredictable results

• behave in a documented manner characteristic of the environment
(with or without issuing a diagnostic)

• terminate a translation or execution (with issuing a diagnostic).

50© 2010 Carnegie Mellon University

Implementation Strategies

Hardware behavior
• Generate the corresponding assembler code, and let the hardware

do whatever the hardware does.

• For many years, this was the nearly-universal policy, so several
generations of C and C++ programmers have assumed that all
compilers behave this way.

Super debug
• Provide an intensive debugging environment to trap (nearly) every

undefined behavior.

• This policy severely degrades the application’s performance, so is
seldom used for building applications.

Total license
• Treat any possible undefined behavior as a “can’t happen” condition.

• This permits aggressive optimizations.

51© 2010 Carnegie Mellon University

Adding a Pointer and an Integer

From C99 §6.5.6p8:

When an expression that has integer type is added to
or subtracted from a pointer, the result has the type
of the pointer operand.
An expression like P[N] is translated into *(P+N) .

52© 2010 Carnegie Mellon University

Adding a Pointer and an Integer

C99 Section 6.5.6 says

If both the pointer operand and the result point to
elements of the same array object, or one past the
last element of the array object, the evaluation shall
not produce an overflow; otherwise, the behavior is
undefined.

If the result points one past the last element of the
array object, it shall not be used as the operand of a
unary * operator that is evaluated.

53© 2010 Carnegie Mellon University

Bounds Checking 1

A programmer might code a bounds-check such as
char *ptr; // ptr to start of array

char *max; // ptr to end of array

size_t len;

if (ptr + len > max)

return EINVAL;

No matter what model is used, there is a bug.
If len is very large, it can cause ptr + len to overflow,
which creates undefined behavior.

Under the hardware behavior model, the result would typically
wrap-around—pointing to an address that is actually lower in
memory than ptr .

54© 2010 Carnegie Mellon University

Bounds Checking 2

In attempting to fix the bug, the experienced programmer (who
has internalized the hardware behavior model of undefined
behavior) might write a check like this:

if (ptr + len < ptr || ptr + len > max)

return EINVAL;

However, compilers that follow the total license model may
optimize out the first part of the check leaving the whole
bounds check defeated

This is allowed because
• if ptr plus (an unsigned) len compares less than ptr , then an

undefined behavior occurred during calculation of ptr + len

• the compiler can assume that undefined behavior never happens
• consequently ptr + len < ptr is dead code and can be removed

55© 2010 Carnegie Mellon University

Algebraic Simplification

Optimizations may be performed for comparisons between
P + V1 and P + V2 , where P is the same pointer and V1 and
V2 are variables of some integer type.

The total license model permits this to be reduced to a
comparison between V1 and V2.

However, if V1 or V2 are such that the sum with P overflows,
then the comparison of V1 and V2 will not yield the same
result as actually computing P + V1 and P + V2 and
comparing the sums.

Because of possible overflows, computer arithmetic does not
always obey the algebraic identities of mathematics.

56© 2010 Carnegie Mellon University

Algebraic Simplification Applied

In our example:
if (ptr + len < ptr || ptr + len > max)

return EINVAL;

this optimization translates as follows:
ptr + len < ptr

ptr + len < ptr + 0

len < 0 (impossible, len is unsigned)

57© 2010 Carnegie Mellon University

Mitigation

This problem is easy to remediate, once it is called to
the attention of the programmer, such as by a
diagnostic message when dead code is eliminated.
For example, if it is known that ptr is less-or-equal-
to max, then the programmer could write:

if (len > max – ptr)

return EINVAL;

This conditional expression eliminates the possibility
of undefined behavior.

58© 2010 Carnegie Mellon University

C1X Analyzability Annex

This annex specifies optional behavior that can aid in
the analyzability of C programs.

An implementation that defines
_ _STDC_ANALYZABLE_ _ shall conform to the
specifications in this annex.

59© 2010 Carnegie Mellon University

Definitions

out-of-bounds store: an (attempted) access (3.1) that, at run
time, for a given computational state, would modify (or, for an
object declared volatile, fetch) one or more bytes that lie
outside the bounds permitted by this Standard.

bounded undefined behavior: undefined behavior (3.4.3) that
does not perform an out-of-bounds store.

NOTE 1 The behavior might perform a trap.

NOTE 2 Any values produced or stored might be
indeterminate values.

critical undefined behavior: undefined behavior that is not
bounded undefined behavior.

NOTE The behavior might perform an out-of-bounds store or
perform a trap.

60© 2010 Carnegie Mellon University

Requirements

If the program performs a trap (3.19.5), the implementation is
permitted to invoke a runtime-constraint handler. Any such
semantics are implementation-defined.

All undefined behavior shall be limited to bounded undefined
behavior, except for the following which are permitted to result
in critical undefined behavior.

61© 2010 Carnegie Mellon University

Critical Undefined Behaviors
1. An object is referred to outside of its lifetime (6.2.4).

2. An lvalue does not designate an object when evaluated (6.3.2.1).

3. A pointer is used to call a function whose type is not compatible with
the pointed-to type (6.3.2.3).

4. The operand of the unary * operator has an invalid value (6.5.3.2).

5. Addition or subtraction of a pointer into, or just beyond, an array object
and an integer type produces a result that points just beyond the array
object and is used as the operand of a unary * operator that is
evaluated (6.5.6).

6. An argument to a library function has an invalid value or a type not
expected by a function with variable number of arguments (7.1.4).

7. The value of a pointer that refers to space deallocated by a call to the
free or realloc function is used (7.21.3).

8. A string or wide string utility function is instructed to access an array
beyond the end of an object (7.22.1, 7.27.4).

62© 2010 Carnegie Mellon University

Agenda

Secure Coding Standards

SCALe

AIR Integers

Secure C Compiler

Standards

Secure Coding Education

63© 2010 Carnegie Mellon University

Secure Coding in C/C++ Course

Four day course provides practical guidance on secure
programming

• provides a detailed explanation of common programming errors

• describes how errors can lead to vulnerable code

• evaluates available mitigation strategies

• http://www.sei.cmu.edu/products/courses/p63.html

Useful to anyone involved in developing secure C and C++
programs regardless of the application

Licensed to Computer Associates and Siemens to train
internal software developers

64© 2010 Carnegie Mellon University

CMU Courses

Offered as an undergraduate elective in the School of
Computer Science in S07, S08, S09, and S10

• More of a vocational course than an “enduring
knowledge” course.

• Students are interested in taking a class that goes
beyond “policy”

Secure Software Engineering graduate course
offered at INI in F08, F09, FY10

65© 2010 Carnegie Mellon University

Secure Coding Education

Developing online version of “Secure Coding in C and C++”
course taught at CMU and by the SEI.

Working with the Eberly Center for Teaching Excellence and
the Open Learning Initiative at CMU

[OLI is] an amazing and critical piece of work. . . The idea
of these virtual labs and intelligent tutoring systems, I
think, can really revolutionize education. And we need to
revolutionize education.

Bill Gates
Co-chair and Trustee of the Bill & Melinda Gates
Foundation
Speaking at Carnegie Mellon

”
“

66© 2010 Carnegie Mellon University

OLI Goals

Produce exemplars of scientifically based online
courses and course materials that enact instruction
and support instructors

Provide open access to these courses and materials

Develop a community of use, research &
development that contributes to the evaluation,
continuous improvement, and ongoing growth of the
courses and materials.

67© 2010 Carnegie Mellon University

The Course Design Triangle

Instructional Activities

Learning Objectives

Assessments
Tasks that provide

feedback on students’
knowledge and skills

Descriptions of what students
should be able to do at the

end of the course

Contexts and activities that foster
students’ active learning

68© 2010 Carnegie Mellon University

Learners
receive
support in
the problem-
solving
context

69© 2010 Carnegie Mellon University

What is a Cognitive Tutor?

A computerized learning environment whose design
is based on cognitive principles and whose
interaction with students is based on that of a
(human) tutor

• making comments when the student errs

• answering questions about what to do next

• maintaining a low profile when the student is performing
well.

70© 2010 Carnegie Mellon University

Accelerated Learning Results

OLI students completed course in half a semester,
meeting half as often during that time

OLI students showed significantly greater learning
gains (on the national standard “CAOS” test for
statistics knowledge)

No significant difference between OLI and traditional
students in follow-up measures of knowledge
retention given a semester later

These results have been replicated with a larger
sample

70

71© 2010 Carnegie Mellon University

Other Class Results

Community College accelerated learning study:
— OLI: 33% more content covered

— OLI: 13% learning gain vs. 2% in traditional face-to-face class

Large State University:
— OLI: 99% completion rate

— Traditional face-to-face class: 41% completion rate

71

72© 2010 Carnegie Mellon University

End of Course Student Survey for
Accelerated Online
85% Definitely Recommend

15% Probably Recommend

0% Probably not Recommend

0% Definitely not Recommend

73© 2010 Carnegie Mellon University

Quotes

Student Quote: "This is so much better than reading
a textbook or listening to a lecture! My mind didn’t
wander, and I was not bored while doing the lessons.
I actually learned something.“

Instructor Quote: “The format [of the accelerated
learning study] was among the best teaching
experiences I’ve had in my 15 years of teaching
statistics.”

74© 2010 Carnegie Mellon University

For More Information
Visit CERT ® web sites:
http://www.cert.org/secure-coding/
https://www.securecoding.cert.org/

Contact Presenter
Robert C. Seacord
rcs@cert.org
(412) 268-7608

Contact CERT:
Software Engineering Institute
Carnegie Mellon University
4500 Fifth Avenue
Pittsburgh PA 15213-3890
USA

